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Abstract. Optimal capacities of perceptrons with graded input—output relations are studied
within the first-step replica-symmetry-breaking Gardner approach. Input-data errors and a limited
output precision are allowed. In particular, the role of non-monotonicity in the input—output
relations on the breaking and on the overall performance is determined.

1. Introduction

In recent years non-monotonic neural networks, mostly with binary output neurons, have
received some interest [1-7]. A first reason is that they are seen to permit a larger storage
capacity than the limiting valuee. = 2 found by Gardner [8] for monotonic transfer
functions. Furthermore, it is argued that the computational capabilities of non-monotonic
networks are improved through a dynamic selection of optimal subnetworks allowing, for
example, better storage of correlated patterns. Finally, in extremely diluted non-monotonic
models the retrieval quality is better in the sense that the domains of attraction of the
retrieval states are enlarged.

In the framework of the Gardner theory [8, 9], optimal storage capacities have been
analysed for multi-state monotonic networks (see [10-12] and references therein) and
networks with graded (continuous) input—output relations [13], allowing input-data errors
and a limited input—output precision. The investigation of the latter network is motivated
especially by the fact that graded-response perceptrons constitute the basic building blocks
of layered architectures trained by the backpropagation algorithm. Such systems are very
frequently used in practical applications.

In most of the works mentioned so far the assumption of replica symmeg)yig
an important ingredient in the computations. In [2] a first-step replica-symmetry-breaking
(RsB) calculation has been performed for a simple fully connected non-monotonic network
with binary neurons.

The purpose of the present paper is to extend previous analysis of optimal capacities for
graded-response perceptrons [13] in two non-trivial directions. First, besides the influence
of the desired output precision and the stability with respect to input errors, the role of
increasing non-monotonicity in the input—output relations is analysed and discussed. Second,
since it is shown that already in the monotonic case [13] the results obtained are not always
stable againstss, the additional effects of first-stegsB are examined in some detail. These
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effects are shown to be important and in some examples even the qualitative behaviour of
the network is changed.

The rest of this paper is organized as follows. In section 2 we formulate the problem
in a way that allows us to apply the first-stegs Gardner-type analysis in a relatively
straightforward manner. We give tiRs approximation for the capacity and the local field
distribution, then discuss its stability and finally work out the corresponding formula in a
first-steprsB treatment. In section 3 we present and discuss our main results for a set of
representative examples for both monotonic and non-monotonic input—output relations for
different values of the input stability and output tolerance. Section 4, finally, contains some
concluding remarks.

2. Replica analysis of the problem

We consider a graded-response perceptron mapping a collection of input pg§ferhs<
i < N}, 1< u < p, onto a corresponding set of outputs, 1 < u < p, via

¢t =g (yh") 1)

1
W=y g, 2
i ; €] 3

Here g is the input—output relation of the perceptron, which may be largely arbitrary. In
particular, g need not be monotone non-decreasing, or invertible for our general line of
reasoning to be applicable. In equation (jt)denotes a gain parameter aint is the local

field generated by the inputs/‘} as specified in (2). Thé; are couplings of an architecture

of perceptron type. We restrict our attention to general unbiased input patterns specified by
(&) = 0 and(g/'¢}) = 8,.,8:;C. Since the effect o in (1) can be absorbed in the gain
parameter we tak€ = 1 in the following.

2.1. Replica-symmetric approximation

We start by briefly reviewing thes Gardner-type analysis of [13], thereby generalizing the
final results to non-monotonic input—output relations. We furthermore check the validity of
local stability of thers solution using the arguments of [14].

The beginning of the computational strategy is to require stability with respect to input-
data errors and to allow a limited output precision in the mapping (1). In other words the
output that results when the input layer is in the s{gfé} is accepted if

gly(h* £ «)) € Iow(¢", e) =[¢" —€, 0" + €] w=1...,p 3

where the positive parametersand i denote the required input stability and the allowed
output tolerance, respectively. In order to compute the available Gardner volufmgpace
satisfying (3) we rewrite this equation as a condition on the local fields

h' e 1" = {x; g(y(x £x)) € low(¢", €)} w=1..,p. 4)
In general, the setg* form a collection of intervals
" =Ul 1 =0, 1 ul] (5)

where/!* andu!’ denote upper and lower bounds of ttie subintervall/*, respectively, and
n* is the total number of subintervals defined by the pattétnin contrast with the case of
monotonic non-decreasing input—output relations treated in [13], the/ edse no longer
simply connected intervals when we allow general non-monotonic input—output functions.
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Of course, for each output”, Iow(¢#, €) should have a non-empty intersection with the
range ofg in order to havex, > 0. Furthermore, for convenience from the technical point
of view we also assume that tH¢ contain no isolated points.

We then have for the fractional volume

V= fl_L d‘I18 (N - Zi Ji2) l_[,lL f[u dyMS (yM - hM)
- JT1;duis (N =3, ) '
We remark that we use explicitly the mean spherical normalizgfign/? = N in order to
fix a scale for the gain parametgrof the input—output relations. Following Gardner [8],
we use the replica technique to evaluate: limy_, ., N~(In V), where(- - -)) denotes an

average over the statistics of inpyts‘} and outputs{¢*}. The standard order parameter
occurring in this calculation is the overlap between two distinct replicas in coupling space

(6)

1Y :
qM/ENZJi)‘Ji)‘ A< MM =1,...,n. 7
i=1

Assuming that replica symmetry is not broken, kg, = ¢, a straightforward but tedious
calculation following [13] leads to the following result in the relevad# Gardner limit

qg— 1.
e L)
apt = Z(/l Dr (Il —1)* + / Dr(ut — t)2> (8)
2

i—1 (ut" u G

where D = (dt/+/27) exp(—t2/2) is the Gaussian measure and whefe = —oco and
1.4 = +oo for all 1. The optimal capacity is a function of bothand« becausé€; and
ul’ are (see equation (4)). Moreover it dependsgor and the statistics of the desired,
the average over which remains to be done.

We immediately remark that these results are not always stable agamdtollowing
standard considerations [9, 15] we find that in order to check this stability it is sufficient to
look at the sign of the product of the eigenvalues of the matrix of transverse fluctuations,
the so-called replicon eigenvalug. The evaluation ofg can be done using an analogous
argumentation to the one given in [14]. We obtain again inRb&ardner limitg — 1

0 2
AR=a</+ Dt(i[ko(t,o)—t]>> -1<0 (9)

4
where for the case at hand we have to look at the valug6f o) in the limit 0 — oo.
For general input—output relations these values read

i

t for I <t <ul
Iz " 1,1 iz
Aolt) = ; for wy <t <3@u; +17,,) (10)
° " for Tt +1") <t <I®
i+1 o \U; i+1 i+1
" "
t for I, <t<u,

fori =1,...,n". It follows immediately that for monotonic non-decreasing input—output
relations (the case of a simply connected interwa stability is guaranteed if

I 00
ARzaR5<f Dt+/ Dt> —1<0 (11)
—00 uh oh

in agreement with [13]. However, for non-monotonic input—output relations discontinuities
occur at the endpoints of the subintervals in (10) such that the eigenvalue is infinite and



2302 D Bollé and R Erichsen Jr

hence replica symmetry is unstable. This extends the result of [2] to general non-monotonic
input—output relations.

At this point it is instructive to calculate the distribution of the local fields corresponding
to a specific output patterg¥‘. The result reads (compare [11, 12])

nt

it Tl
prs(h*) = |:8(h“ — l;‘)/l Dr + 8(h* — u;‘)/ Y
g+

i=1

1
+ (B = 1) — 0 (h* — ul")) —— ex —1h“2]. 12
(0( i) —0( ,))@ p[ —3(")?] (12)
Due to the summation over the subintervafsa gap structure emerges in equation (12),
in agreement with [14]. Finally, we remark that the distribution of the couplings is always
Gaussian.

2.2. Replica-symmetry breaking

From the observations presented above and related results in the literature [2, 13] we expect
a strongrse effect. So we want to improve thes results by applying the first step of
Parisi'srRsB scheme [16]. We therefore introduce the following order parameters

e q1 if ar=p
G = qg 5. = . (13)
puf2 q0 if a1 # B
whereay, 1 = 1,....,n/m; a2, B2 =1,...,m and 1< m < n. We remark that in the

limit n — 0, 0 < m < 1. The fractional volumeV becomes a function of the three
order parametergy, g1 andm. Analogous to thes calculation the optimal properties are
obtained in the limity; — 17,m — 0 and 0< ¢go < g1 With m/(1 — ¢1) = M a finite
value. In this limit the relevant quantity reads after a standard but tedious calculation

— 1 qo
(1= q1)v(qo. q1.m) = 5 IN[1 + M (1~ go)] + 2[1+ M(1— qo)]
+% </ DzoIn i (go, M, ZO)> +O((1 = q1) In(1 = g1)) (14)

with
Y1u(qo, M, 20) = Z [L(q0. M, zo; 3@ + 1), 1) — L (qo, M, z0; 1", I!")
i=1

+L (qo, 0, zo; I!* l”) —L (qo, 0, zo: ul, uf‘)

107

+L (g0, M, zo; ul*, ul') — L(go. M, z0; 3(u!" + 1/, 1), ul')] (15)
and
L(qo, M, z0: x,y) = ﬁzom Dz1 exp[—z (y — 20/q0 — 1y 1 - qo) } : (16)

From the saddle-point equatiofs/dqo = 0, dv/dg; = 0 anddv/dm = 0 we obtain, after
some algebra, the first-steysB critical capacity in the form

“in [+ M- 0] - g
<f DzoInyrpu(qo, M, ZO))

aRrsB1= MIN (17)
qo0.M
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Explicit results for different input—output relations will be discussed in the next section.
Compared with (12) the first-stepsB distribution of the local fields corresponding to the
patterns#* becomes

nt

Dzo {
Prse(h") ;:/W(qo, M, 7o) ( )
<[ a0, M. 205 Bl + 1. 1) — L (a0, M. 211 1))

1 exp[_ (h — zw@j
V2l =q0) 21— qo)

+8(h" —u)[L (q0. M. 20t uf'. u}') — L(qo. M. 201 5(uj’ +1fsy). ”ft)]} :
(18)

+[om* =1 —o(h" — ut)]

In contrast to the local field distribution for tires solution, the continuous part of (18) is
non-Gaussian because of the factggl.. We remark that the distribution for the couplings
does not change it is independent of the breaking.

3. Results

In the following we report the results for a set of representative examples for both monotonic
and non-monotonic input—output relations for different values of the output tolerance and
input stability.

3.1. Monotonic input—output relations

In order to get a first qualitative idea abags in this case, we require all local fields to

lie in a fixed finite interval (see equation (4)), in other words we suppose that the output
distribution, the input—output relation and the parameteasd« are such thaf* = [/, u]

for all patternse*.

Roughly speaking, we find that for a small allowed interval Riseesult for the critical
capacity is stable. When this interval increases the Iaeatability breaks down, both the
RS and first-stersB critical capacity increase and their difference also increases. It is seen
that this difference in capacity is rather limited. For example, for an asymmetric interval
of order unity ( = 0, u = 1) it is of the order of 103. In contrast, it turns out that for this
interval the difference in the RS and the first-steg® local field distributions is relatively
important, as is shown in figure 1. We remark that the coefficients oftpart in the
distributions (recall equations (12) and (18)) aré®at#* = 0 and 014 ath* = 1 for the
RSB solution versus & and 016 for thers solution. These results indicate that although the
RS solution gives a good indication of the critical capacity in this case, it fails in predicting
the local field distribution.

Taking a closer look at this relatively simple one-interval case, the details are already
very complex. For example, even in tls analysis it turns out that when the size of a
symmetrically chosen interval is greater than a certain critical value, there may be several
solutions with non-zerg of the saddle-point equations for given In that case additional
guantities like the relative entropies have to be compared to pick out the physical one. For
more details we refer to [17] where a complete Parisi hierarchical scheme has been worked
out for this case.
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0.0015 |
da 0.0010 —
0.0005 — Figure 2. Therscritical capacity (dotted curve)
:' and its difference with thekss capacity, Aa,
0.0000 (full purve) for the‘piecewise Iir_]ear input—output
0.0 relation as a function of the gain paramegefor

Y e =0.7 andx = 0.

Specifying to the monotonic piecewise linear input—output relation

for |x| <1

X
§) = sign(x) elsewhere (19)

as a representative example of the more general situation, and taking the output distribution
to be constant homogeneous in this intervall[+1], we obtain the following results. In
figure 2 the difference between ths and the first-stegsB critical capacities is shown as

a function of the gain parameter for the input stabilityx = O and the output tolerance

€ = 0.7. The maximum difference between these capacities turns out to be small for all
output tolerances not close to 1. Foincreasing from 0 to @, it increases from 0 t0.028.

For € going to 1 it numerically behaves like — ¢)~*. Its peak value occurs for > y ¢
WhereyOF;? is the value of the gain parameter such that, giw@md the output statistics, the
critical capacity is maximal. This difference between tteeand RSB critical capacities is
zero exactly ai;/oFff, confirming that replica symmetry is not broken for< yOF;? [13] and
telling us furthermore that the first-steysBs critical capacity attains the same maximum at
the same value of as thers one. Forkx # 0 the behaviour is similar but in all cases we
have examined, thes breaking occurs beyond the position of the maximjacﬁ‘?.

3.2. Non-monotonic input—output relations

In this section we describe the results for input—output relations with an increasing degree
of non-monotonicity. The prototype of such a function is the ‘saw tooth’ function with
an increasing number of teeth. In the course of this discussion we generalize some of the
results in [2] and find interesting new behaviour for the graded-response perceptron.
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25.0

100

5.0 i
Figure 3. The rs (dotted curve) andkss (full curve)

0.0 ! ! L . critical capacities as a function of the gain parameter
0.0 0.2 0.4 0.6 0.8 1.0 for x =0 ande = 0.7 (lower curves), ® and 095 (upper
y curves).

We start by considering the input—output relation

—Xx for x| <1 20
§) = sign(x) elsewhere (20)
with a constant homogeneous output distribution. In this case the allowed interval in (4) is
no longer connected for the finite fraction of patterns satisfyirg > 1 — €. For example,
the corresponding interval for positive patterns is givenlby=[—1/y, u*] U [1/y, +00).

We first takex = 0. In figure 3 we show the critical capacities for different values of
the output tolerance as a function pf Compared with the monotonic case we see that the
overall difference between thes and first-steprsB solutions is much bigger. However,
for y € [0,0.2] it is of the order of 103 (versus zero for the monotonic case). In this
respect we note that fgr close to zero, the input—output relation becomes effectively less
non-monotonic. Thinking in terms of the local fields (18) the main contributions concentrate
around the origin in one interval, i.e. in the first part of the interi#alfor the example
specified above (namely-{l/y, u*]), while the rest of the contributions fall into an interval
shifting towards infinity, i.e. in the second part bf specified above (namely [¥, +00)).
Hence the latter becomes less important and the system almost behaves like a one-interval
system.

Furthermore, for small values ¢f ande € [0.9, 1] a secondary maximum develops in
the Rs solution. Interestingly, it turns out that this secondary maximum is the only one that
survives in the first-stepsB solution. So the peak values in ths and RSB capacities are
very different and occur for very different values pf Finally, thers andRsB local field
distributions for the cases we have examined are clearly distinct as in the monotonic case.
For « # 0 all these results are qualitatively the same. We recall that if bathd « are
non-zero then there is an upper boundjyobeyond whiche, (¢, k, y) = 0 [13].

Next we extend the discussion to an input—output relation with a stronger non-monotonic
behaviour (more ‘teeth’ in the saw tooth function). To simplify the numerical treatment we
fix the output distribution, the input stability and the output tolerance such that the local
field for every patterrt# lies in an interval

I =[—ka,—(k—Da]U[—(k —2a, —(k —3)a]lU---U[k — 2a, (k — Da] U [ka, c0]
(21)

for evenk and

I =[—00, —kal]U[—(k — Da, —(k —2)a]U---U[(k — J)a, (k — 2)a] U[(k — D)a, ka]
(22)
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100.0 8.0

(a) (b)

RS

Figure 4. The critical capacity for thé-interval model as a function of the interval widihfor
k =1 (lower curve) tok = 5 (upper curve): ) rRs case; b) RSB case.

for odd k, wherek is an effective measure for the degree of non-monotonicityaaisdthe
width of each subinterval fixed by the choicexgfy ande. In figure 4 we show the critical
capacities as a function affor increasing values df for both thers andrsB solution. The
following remarks have to be made. For~> oo the critical capacity goes, of course, to 2.
Its maximum increases much faster in t&case than in th&ss case. Calculations fot
up to 100 seem to indicate that the asymptotic behaviour of the maximum is a power law
(eMax ~ k1.78) for the RS solution but only logarithmic for th&ss solution. This teaches
us that the effect of the breaking is drastically increasing when the non-monotonicity of the
input—output relations gets stronger.

It is interesting to remark that the order paramejgbecomes zero for a finite interval
width a, indicating that the replica solutions become uncorrelated-gpace. The value of
a where this happens decreases with the number of intekvaisirthermore, the minimum
determined in (17) is very flat as a function g@f such that it could be calculated with the
fixed valuego = 0. A comparable situation occurs in the parity machine [18] and in the
unsupervised learning problem discussed in [19].

4. Concluding remarks

In this paper we have studied the effects of first-skgs on the performance of the
graded-reponse perceptron allowing input-data errors and a limited output precision for
both monotonic and non-monotonic input—output relations. Especially in the latter case
some interesting new behaviour has been found.

For monotonic input—output relations, where the allowed interval for the local fields is
connected, it is found that the effect of the breaking on the critical capacity as a function
of the gain parameter is weak as long as the output tolerance is not close to 1. In the
neighbourhood of 1 the difference between the symmetric and first-step broken critical
capacities diverges. The distribution of the local fields is clearly different in the symmetric
versus the first-step broken solution.

However, for non-monotonic input—output relations, where for some fraction of the
output patterns the allowed interval is not connected, the overall effect of the breaking on
the critical capacity is substantial. The effect on the distribution of the local fields is similar
to the monotonic case. It is fair to say that the replica symmetric solution gives wrong
results for most values of the gain parameter. When increasing the number of disconnected
intervals it even predicts a qualitatively different behaviour.
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