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replica-symmetry-breaking solution
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Instituut voor Theoretische Fysica, KU Leuven, B-3001 Leuven, Belgium
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Abstract. Optimal capacities of perceptrons with graded input–output relations are studied
within the first-step replica-symmetry-breaking Gardner approach. Input-data errors and a limited
output precision are allowed. In particular, the role of non-monotonicity in the input–output
relations on the breaking and on the overall performance is determined.

1. Introduction

In recent years non-monotonic neural networks, mostly with binary output neurons, have
received some interest [1–7]. A first reason is that they are seen to permit a larger storage
capacity than the limiting valueαc = 2 found by Gardner [8] for monotonic transfer
functions. Furthermore, it is argued that the computational capabilities of non-monotonic
networks are improved through a dynamic selection of optimal subnetworks allowing, for
example, better storage of correlated patterns. Finally, in extremely diluted non-monotonic
models the retrieval quality is better in the sense that the domains of attraction of the
retrieval states are enlarged.

In the framework of the Gardner theory [8, 9], optimal storage capacities have been
analysed for multi-state monotonic networks (see [10–12] and references therein) and
networks with graded (continuous) input–output relations [13], allowing input-data errors
and a limited input–output precision. The investigation of the latter network is motivated
especially by the fact that graded-response perceptrons constitute the basic building blocks
of layered architectures trained by the backpropagation algorithm. Such systems are very
frequently used in practical applications.

In most of the works mentioned so far the assumption of replica symmetry (RS) is
an important ingredient in the computations. In [2] a first-step replica-symmetry-breaking
(RSB) calculation has been performed for a simple fully connected non-monotonic network
with binary neurons.

The purpose of the present paper is to extend previous analysis of optimal capacities for
graded-response perceptrons [13] in two non-trivial directions. First, besides the influence
of the desired output precision and the stability with respect to input errors, the role of
increasing non-monotonicity in the input–output relations is analysed and discussed. Second,
since it is shown that already in the monotonic case [13] the results obtained are not always
stable againstRSB, the additional effects of first-stepRSB are examined in some detail. These

† E-mail address: Desire.Bolle@fys.kuleuven.ac.be
‡ Also at Interdisciplinair Centrum voor Neurale Netwerken, KU Leuven, Belgium.

0305-4470/96/102299+09$19.50c© 1996 IOP Publishing Ltd 2299



2300 D Bollé and R Erichsen Jr

effects are shown to be important and in some examples even the qualitative behaviour of
the network is changed.

The rest of this paper is organized as follows. In section 2 we formulate the problem
in a way that allows us to apply the first-stepRSB Gardner-type analysis in a relatively
straightforward manner. We give theRS approximation for the capacity and the local field
distribution, then discuss its stability and finally work out the corresponding formula in a
first-stepRSB treatment. In section 3 we present and discuss our main results for a set of
representative examples for both monotonic and non-monotonic input–output relations for
different values of the input stability and output tolerance. Section 4, finally, contains some
concluding remarks.

2. Replica analysis of the problem

We consider a graded-response perceptron mapping a collection of input patterns{ξµi ; 1 6
i 6 N}, 1 6 µ 6 p, onto a corresponding set of outputsζµ, 1 6 µ 6 p, via

ζµ = g (γ hµ) (1)

hµ = 1√
N

∑
j

Jj ξ
µ

j . (2)

Here g is the input–output relation of the perceptron, which may be largely arbitrary. In
particular,g need not be monotone non-decreasing, or invertible for our general line of
reasoning to be applicable. In equation (1),γ denotes a gain parameter andhµ is the local
field generated by the inputs{ξµi } as specified in (2). TheJj are couplings of an architecture
of perceptron type. We restrict our attention to general unbiased input patterns specified by
〈ξµi 〉 = 0 and〈ξµi ξ νj 〉 = δµ,νδi,jC. Since the effect ofC in (1) can be absorbed in the gain
parameter we takeC = 1 in the following.

2.1. Replica-symmetric approximation

We start by briefly reviewing theRS Gardner-type analysis of [13], thereby generalizing the
final results to non-monotonic input–output relations. We furthermore check the validity of
local stability of theRS solution using the arguments of [14].

The beginning of the computational strategy is to require stability with respect to input-
data errors and to allow a limited output precision in the mapping (1). In other words the
output that results when the input layer is in the state{ξµi } is accepted if

g(γ (hµ ± κ)) ∈ Iout(ζ
µ, ε) ≡ [ζµ − ε, ζµ + ε] µ = 1, . . . , p (3)

where the positive parametersκ andµ denote the required input stability and the allowed
output tolerance, respectively. In order to compute the available Gardner volume inJ -space
satisfying (3) we rewrite this equation as a condition on the local fields

hµ ∈ Iµ ≡ {x; g(γ (x ± κ)) ∈ Iout(ζ
µ, ε)} µ = 1, . . . , p . (4)

In general, the setsIµ form a collection of intervals

Iµ = ∪nµi=1I
µ

i = ∪nµi=1

[
l
µ

i , u
µ

i

]
(5)

wherelµi anduµi denote upper and lower bounds of theith subintervalIµi , respectively, and
nµ is the total number of subintervals defined by the patternζµ. In contrast with the case of
monotonic non-decreasing input–output relations treated in [13], the setsIµ are no longer
simply connected intervals when we allow general non-monotonic input–output functions.
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Of course, for each outputζµ, Iout(ζ
µ, ε) should have a non-empty intersection with the

range ofg in order to haveαc > 0. Furthermore, for convenience from the technical point
of view we also assume that theIµ contain no isolated points.

We then have for the fractional volume

V =
∫ ∏

i dJiδ
(
N − ∑

i J
2
i

) ∏
µ

∫
Iµ

dyµδ (yµ − hµ)∫ ∏
i dJiδ

(
N − ∑

i J
2
i

) . (6)

We remark that we use explicitly the mean spherical normalization
∑

i J
2
i = N in order to

fix a scale for the gain parameterγ of the input–output relations. Following Gardner [8],
we use the replica technique to evaluatev = limN→∞N−1〈〈lnV 〉〉, where〈〈· · ·〉〉 denotes an
average over the statistics of inputs{ξµi } and outputs{ζµ}. The standard order parameter
occurring in this calculation is the overlap between two distinct replicas in coupling space

qλλ′ ≡ 1

N

N∑
i=1

J λi J
λ′
i λ < λ′ λ, λ′ = 1, . . . , n . (7)

Assuming that replica symmetry is not broken, i.e.qλλ′ ≡ q, a straightforward but tedious
calculation following [13] leads to the following result in the relevantRS Gardner limit
q → 1:

α−1
RS =

〈
nµ∑
i=1

(∫ l
µ
i

1
2 (u

µ

i−1+lµi )
Dt (lµi − t)2 +

∫ 1
2 (u

µ
i +lµi+1)

u
µ
i

Dt (uµi − t)2
)〉

ζµ

(8)

where Dt = (dt/
√

2π) exp(−t2/2) is the Gaussian measure and whereuµ0 = −∞ and
l
µ

nµ+1 = +∞ for all µ. The optimal capacity is a function of bothε andκ becauselµi and
u
µ

i are (see equation (4)). Moreover it depends ong, γ and the statistics of the desiredζµ,
the average over which remains to be done.

We immediately remark that these results are not always stable againstRSB. Following
standard considerations [9, 15] we find that in order to check this stability it is sufficient to
look at the sign of the product of the eigenvalues of the matrix of transverse fluctuations,
the so-called replicon eigenvalueλR. The evaluation ofλR can be done using an analogous
argumentation to the one given in [14]. We obtain again in theRS Gardner limitq → 1

λR = α

〈∫ +∞

−∞
Dt

(
d

dt
[λ0(t, σ )− t ]

)2
〉
ζµ

− 1< 0 (9)

where for the case at hand we have to look at the value ofλ0(t, σ ) in the limit σ → ∞.
For general input–output relations these values read

λ0(t) =


t for l

µ

i < t < u
µ

i

u
µ

i for u
µ

i < t < 1
2(u

µ

i + l
µ

i+1)

l
µ

i+1 for 1
2(u

µ

i + l
µ

i+1) < t < l
µ

i+1

t for l
µ

i+1 < t < u
µ

i+1

(10)

for i = 1, . . . , nµ. It follows immediately that for monotonic non-decreasing input–output
relations (the case of a simply connected interval)RS stability is guaranteed if

λR = αRS

〈∫ lµ

−∞
Dt +

∫ ∞

uµ
Dt

〉
ζµ

− 1< 0 (11)

in agreement with [13]. However, for non-monotonic input–output relations discontinuities
occur at the endpoints of the subintervals in (10) such that the eigenvalue is infinite and
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hence replica symmetry is unstable. This extends the result of [2] to general non-monotonic
input–output relations.

At this point it is instructive to calculate the distribution of the local fields corresponding
to a specific output patternζµ. The result reads (compare [11, 12])

ρRS(h
µ) =

nµ∑
i=1

[
δ(hµ − l

µ

i )

∫ l
µ
i

1
2 (u

µ

i−1+lµi )
Dt + δ(hµ − u

µ

i )

∫ 1
2 (u

µ
i +lµi+1)

u
µ
i

Dt

+ (
θ(hµ − l

µ

i )− θ(hµ − u
µ

i )
) 1√

2π
exp

[ − 1
2(h

µ)2
]]
. (12)

Due to the summation over the subintervalsIµi a gap structure emerges in equation (12),
in agreement with [14]. Finally, we remark that the distribution of the couplings is always
Gaussian.

2.2. Replica-symmetry breaking

From the observations presented above and related results in the literature [2, 13] we expect
a strongRSB effect. So we want to improve theRS results by applying the first step of
Parisi’sRSB scheme [16]. We therefore introduce the following order parameters

qλλ′ = q
α1α2
β1β2

=
{
q1 if α1 = β1

q0 if α1 6= β1
(13)

whereα1, β1 = 1, . . . , n/m;α2, β2 = 1, . . . , m and 16 m 6 n. We remark that in the
limit n → 0, 0 6 m 6 1. The fractional volumeV becomes a function of the three
order parametersq0, q1 andm. Analogous to theRS calculation the optimal properties are
obtained in the limitq1 → 1−, m → 0 and 06 q0 6 q1 with m/(1 − q1) = M a finite
value. In this limit the relevant quantityv reads after a standard but tedious calculation

(1 − q1)v(q0, q1, m) = 1

2M
ln[1 +M(1 − q0)] + q0

2[1 +M(1 − q0)]

+ α

M

〈∫
Dz0 lnψIµ(q0,M, z0)

〉
+ O((1 − q1) ln(1 − q1)) (14)

with

ψIµ(q0,M, z0) =
nµ∑
i=1

[
L

(
q0,M, z0; 1

2(u
µ

i−1 + l
µ

i ), l
µ

i

) − L
(
q0,M, z0; lµi , lµi

)
+L (

q0, 0, z0; lµi , lµi
) − L

(
q0, 0, z0; uµi , uµi

)
+L (

q0,M, z0; uµi , uµi
) − L

(
q0,M, z0; 1

2(u
µ

i + l
µ

i+1), u
µ

i

)]
(15)

and

L(q0,M, z0; x, y) =
∫ ∞

x−z0
√
q0√

1−q0

Dz1 exp

[
−M

2

(
y − z0

√
q0 − z1

√
1 − q0

)2
]
. (16)

From the saddle-point equations∂v/∂q0 = 0, ∂v/∂q1 = 0 and∂v/∂m = 0 we obtain, after
some algebra, the first-stepRSB critical capacity in the form

αRSB1 = min
q0,M

− 1
2 ln

[
1 +M(1 − q0)

] − q0M

2[1+M(1−q0)]〈∫
Dz0 lnψIµ(q0,M, z0)

〉
 . (17)
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Explicit results for different input–output relations will be discussed in the next section.
Compared with (12) the first-stepRSB distribution of the local fields corresponding to the
patternζµ becomes

ρRSB1(h
µ) =

nµ∑
i=1

∫
Dz0

ψIµ(q0,M, z0)

{
δ(hµ − l

µ

i )

×[
L

(
q0,M, z0; 1

2(u
µ

i−1 + l
µ

i ), l
µ

i

) − L
(
q0,M, z0; lµi , lµi

) ]
+ [
θ(hµ − l

µ

i )− θ(hµ − u
µ

i )
] 1√

2π(1 − q0)
exp

[
− (h

µ − z0
√
q0)

2

2(1 − q0)

]
+δ(hµ − u

µ

i )
[
L

(
q0,M, z0; uµi , uµi

) − L
(
q0,M, z0; 1

2(u
µ

i + l
µ

i+1), u
µ

i

)]}
.

(18)

In contrast to the local field distribution for theRS solution, the continuous part of (18) is
non-Gaussian because of the factor 1/ψIµ . We remark that the distribution for the couplings
does not change it is independent of the breaking.

3. Results

In the following we report the results for a set of representative examples for both monotonic
and non-monotonic input–output relations for different values of the output tolerance and
input stability.

3.1. Monotonic input–output relations

In order to get a first qualitative idea aboutRSB in this case, we require all local fields to
lie in a fixed finite interval (see equation (4)), in other words we suppose that the output
distribution, the input–output relation and the parametersε andκ are such thatIµ = [l, u]
for all patternsζµ.

Roughly speaking, we find that for a small allowed interval theRS result for the critical
capacity is stable. When this interval increases the localRS stability breaks down, both the
RS and first-stepRSB critical capacity increase and their difference also increases. It is seen
that this difference in capacity is rather limited. For example, for an asymmetric interval
of order unity (l = 0, u = 1) it is of the order of 10−3. In contrast, it turns out that for this
interval the difference in the RS and the first-stepRSB local field distributions is relatively
important, as is shown in figure 1. We remark that the coefficients of theδ-part in the
distributions (recall equations (12) and (18)) are 0.46 athµ = 0 and 0.14 athµ = 1 for the
RSB solution versus 0.5 and 0.16 for theRS solution. These results indicate that although the
RS solution gives a good indication of the critical capacity in this case, it fails in predicting
the local field distribution.

Taking a closer look at this relatively simple one-interval case, the details are already
very complex. For example, even in theRS analysis it turns out that when the size of a
symmetrically chosen interval is greater than a certain critical value, there may be several
solutions with non-zeroq of the saddle-point equations for givenα. In that case additional
quantities like the relative entropies have to be compared to pick out the physical one. For
more details we refer to [17] where a complete Parisi hierarchical scheme has been worked
out for this case.
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Figure 1. The RS (dotted curve) andRSB (full curve)
distributions of the local fields for the allowed interval
[0,+1].

Figure 2. The RS critical capacity (dotted curve)
and its difference with theRSB capacity,1α,
(full curve) for the piecewise linear input–output
relation as a function of the gain parameterγ for
ε = 0.7 andκ = 0.

Specifying to the monotonic piecewise linear input–output relation

g(x) =
{
x for |x| < 1

sign(x) elsewhere
(19)

as a representative example of the more general situation, and taking the output distribution
to be constant homogeneous in this interval [−1,+1], we obtain the following results. In
figure 2 the difference between theRS and the first-stepRSB critical capacities is shown as
a function of the gain parameterγ for the input stabilityκ = 0 and the output tolerance
ε = 0.7. The maximum difference between these capacities turns out to be small for all
output tolerances not close to 1. Forε increasing from 0 to 0.9, it increases from 0 to 0.028.
For ε going to 1 it numerically behaves like(1 − ε)−1. Its peak value occurs forγ > γ RS

opt

whereγ RS
opt is the value of the gain parameter such that, givenε and the output statistics, the

critical capacity is maximal. This difference between theRS and RSB critical capacities is
zero exactly atγ RS

opt , confirming that replica symmetry is not broken forγ < γ RS
opt [13] and

telling us furthermore that the first-stepRSB critical capacity attains the same maximum at
the same value ofγ as theRS one. Forκ 6= 0 the behaviour is similar but in all cases we
have examined, theRS breaking occurs beyond the position of the maximumγ RS

opt .

3.2. Non-monotonic input–output relations

In this section we describe the results for input–output relations with an increasing degree
of non-monotonicity. The prototype of such a function is the ‘saw tooth’ function with
an increasing number of teeth. In the course of this discussion we generalize some of the
results in [2] and find interesting new behaviour for the graded-response perceptron.
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Figure 3. The RS (dotted curve) andRSB (full curve)
critical capacities as a function of the gain parameterγ

for κ = 0 andε = 0.7 (lower curves), 0.9 and 0.95 (upper
curves).

We start by considering the input–output relation

g(x) =
{

−x for |x| < 1

sign(x) elsewhere
(20)

with a constant homogeneous output distribution. In this case the allowed interval in (4) is
no longer connected for the finite fraction of patterns satisfying|ζµ| > 1− ε. For example,
the corresponding interval for positive patterns is given byIµ = [−1/γ, uµ] ∪ [1/γ,+∞).

We first takeκ = 0. In figure 3 we show the critical capacities for different values of
the output tolerance as a function ofγ . Compared with the monotonic case we see that the
overall difference between theRS and first-stepRSB solutions is much bigger. However,
for γ ∈ [0, 0.2] it is of the order of 10−3 (versus zero for the monotonic case). In this
respect we note that forγ close to zero, the input–output relation becomes effectively less
non-monotonic. Thinking in terms of the local fields (18) the main contributions concentrate
around the origin in one interval, i.e. in the first part of the intervalIµ for the example
specified above (namely [−1/γ, uµ]), while the rest of the contributions fall into an interval
shifting towards infinity, i.e. in the second part ofIµ specified above (namely [1/γ,+∞)).
Hence the latter becomes less important and the system almost behaves like a one-interval
system.

Furthermore, for small values ofγ andε ∈ [0.9, 1] a secondary maximum develops in
the RS solution. Interestingly, it turns out that this secondary maximum is the only one that
survives in the first-stepRSB solution. So the peak values in theRS and RSB capacities are
very different and occur for very different values ofγ . Finally, theRS and RSB local field
distributions for the cases we have examined are clearly distinct as in the monotonic case.
For κ 6= 0 all these results are qualitatively the same. We recall that if bothε and κ are
non-zero then there is an upper bound onγ beyond whichαc(ε, κ, γ ) = 0 [13].

Next we extend the discussion to an input–output relation with a stronger non-monotonic
behaviour (more ‘teeth’ in the saw tooth function). To simplify the numerical treatment we
fix the output distribution, the input stability and the output tolerance such that the local
field for every patternζµ lies in an interval

I = [−ka,−(k − 1)a] ∪ [−(k − 2)a,−(k − 3)a] ∪ · · · ∪ [(k − 2)a, (k − 1)a] ∪ [ka,∞]

(21)

for evenk and

I = [−∞,−ka] ∪ [−(k − 1)a,−(k − 2)a] ∪ · · · ∪ [(k − 3)a, (k − 2)a] ∪ [(k − 1)a, ka]

(22)
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Figure 4. The critical capacity for thek-interval model as a function of the interval widtha for
k = 1 (lower curve) tok = 5 (upper curve): (a) RS case; (b) RSB case.

for odd k, wherek is an effective measure for the degree of non-monotonicity anda is the
width of each subinterval fixed by the choice ofκ, γ andε. In figure 4 we show the critical
capacities as a function ofa for increasing values ofk for both theRS andRSB solution. The
following remarks have to be made. Fora → ∞ the critical capacity goes, of course, to 2.
Its maximum increases much faster in theRS case than in theRSB case. Calculations fork
up to 100 seem to indicate that the asymptotic behaviour of the maximum is a power law
(αmax
c ≈ k1.78) for the RS solution but only logarithmic for theRSB solution. This teaches

us that the effect of the breaking is drastically increasing when the non-monotonicity of the
input–output relations gets stronger.

It is interesting to remark that the order parameterq0 becomes zero for a finite interval
width a, indicating that the replica solutions become uncorrelated inJ -space. The value of
a where this happens decreases with the number of intervalsk. Furthermore, the minimum
determined in (17) is very flat as a function ofq0 such that it could be calculated with the
fixed valueq0 = 0. A comparable situation occurs in the parity machine [18] and in the
unsupervised learning problem discussed in [19].

4. Concluding remarks

In this paper we have studied the effects of first-stepRSB on the performance of the
graded-reponse perceptron allowing input-data errors and a limited output precision for
both monotonic and non-monotonic input–output relations. Especially in the latter case
some interesting new behaviour has been found.

For monotonic input–output relations, where the allowed interval for the local fields is
connected, it is found that the effect of the breaking on the critical capacity as a function
of the gain parameter is weak as long as the output tolerance is not close to 1. In the
neighbourhood of 1 the difference between the symmetric and first-step broken critical
capacities diverges. The distribution of the local fields is clearly different in the symmetric
versus the first-step broken solution.

However, for non-monotonic input–output relations, where for some fraction of the
output patterns the allowed interval is not connected, the overall effect of the breaking on
the critical capacity is substantial. The effect on the distribution of the local fields is similar
to the monotonic case. It is fair to say that the replica symmetric solution gives wrong
results for most values of the gain parameter. When increasing the number of disconnected
intervals it even predicts a qualitatively different behaviour.
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[13] Bollé D, Kühn R and van Mourik J 1993J. Phys. A: Math. Gen.26 3149
[14] Bouten M 1994J. Phys. A: Math. Gen.27 6021
[15] de Almeida J R and Thouless D 1978J. Phys. A: Math. Gen.11 983
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